A Novel Concise Specification and Efficient
F-Logic Based Matching of Semantic Web
Services in Flora-2

Shahin Mehdipour Ataee and Zeki Bayram

Abstract We propose a novel concise specification of semantic web services
conforming to the WSMO standard using the Flora-2 language, as well as a precise
logical definition of what it means for a goal to match a web service. Our innovative
usage of Flora-2 allows very short but expressive descriptions of both goals and web
service capabilities, which are then used by a matching engine to discover which web
services can satisfy a given goal. The matching engine, using the meta-level F-logic
inferencing capabilities of the underlying Flora-2 reasoner, is very efficient and has
a very concise definition itself.

1 Introduction

In service-oriented architecture (SOA), web services are defined, registered, invoked,
and interconnected via some pre-agreed specifications [1]. Web service discovery is
the process of finding one or more appropriate web service(s) among a possibly large
pool of diverse web services. The non-intelligent way is to manually refer to web ser-
vice repositories and use traditional text retrieval techniques to find some candidates
for the specified application. On the other hand it can be done (semi) automatically by
applying certain Al techniques such as logical inference. The latter approach requires
the availability of rich semantic description of web service capabilities, user require-
ments and other related aspects of web services (such as non-functional properties),
commonly in the form of logical statements in some appropriate form of logic, and
in this case discovery amounts to proving certain logical inferences.

The Web Service Modeling Ontology (WSMO) [2] is a meta-ontology for descri-
bing relevant aspects of semantic web services that facilitates the logical description
of web services, user requests in the form of goals, common vocabulary in the form of
ontologies, and bridging the heterogeneities among web services and goals through
mediation. Several languages of varying expressive power, such as WSML-Rule,

S.M. Ataee (X)) - Z. Bayram
Eastern Mediterranean University, TRNC via Mersin 10, Famagusta, Turkey
e-mail: shahin.mpa@gmail.com

© Springer International Publishing Switzerland 2016 191
O.H. Abdelrahman et al. (eds.), Information Sciences and Systems 2015,

Lecture Notes in Electrical Engineering 363,

DOI 10.1007/978-3-319-22635-4_17

shahin.mpa@gmail.com

192 S.M. Ataee and Z. Bayram

WSML-Flight, and WSML-Full [3] have been proposed to specify web services
according to WSMO), all based on Frame-logic (F-logic) [4].

Flora-2 by Michael Kifer et al. [5] is a powerful language for knowledge re-
presentation and reasoning. It is based on F-logic, HilL.og [6], and Transactional logic
[7]. Frames are fundamental structures in Flora-2. They provide a means for defining
classes and objects logically. In the case of objects, a frame can be shown generally in
form of objectId[attribute;-> value;, attribute;-> valuey,

., attribute,-> value,].

In this work, we use Flora-2 as a specification language for semantic description
of web service components according to WSMO and implement a matching engine
based on inference in F-logic in order to discover web services that can satisfy user
requests specified in the form of goals. Our semantic specification is very concise
since it makes use of the underlying Flora-2 syntax to the highest degree possible.
The implementation of the matcher is also very compact since it makes effective use
of the meta-level capabilities of the Flora-2 system.

The rest of this paper is structured as follows. In Sect. 2, we describe the semantic
specification of goals and web services in WSMO, as well as the logic we have used
in the implementation of our service matching engine. In Sect. 3, we demonstrate the
power and practicality of our scheme through a simple but realistic scenario (first
described in [8]) and show how our solution fulfills all the requirements needed to
specify and discover web services/goals. We present a short survey of related work
and compare it to ours in Sect.4. Finally, in Sect.5 we present the conclusion and
future work in the area of semantic web service discovery based on our semantic
web service specification approach.

2 Semantic Specification of Goals and Web Services
and the Matching Process

The functionality of a WSMO web service is defined under the capability tag (ele-
ment) which contains four axioms: pre-condition, assumption, post-condition and
effect [9]. Pre and post conditions represent the internal state of the web service,
whereas assumption and effect represent the state of the outside world (environment).
A WSMO web service guarantees its post-condition and effect if its pre-condition
and assumption are true. This feature of WSMO web services is used for discovery
and selection purposes. For the sake of simplicity, we only consider web service pre-
conditions (shown by web.pre) and web service post-conditions (shown by web.post),
since assumptions and effects can be handled in a similar way.

Logically, the functionality of a web service can be shown by the following for-
mula (the arrow represents the implication operator).

Vx : web.pre(x) = web.post(x) @))

shahin.mpa@gmail.com

A Novel Concise Specification and Efficient F-Logic ... 193

This formula means that for all instantiations of the free variables in the formula
(represented by x), if the pre-condition is true, the web service guaranties that the
post-condition will also be true after the web service has finished its execution.

The definition of a logical match between a goal and a web service can be described
precisely with the formula below:

Vx;iVyi : ((goal.pre(xi) = web.pre(y;))
A 2
(goal.pre(xi) A (web.pre(y;) = web.post(yi)) = goal.post (xi))

This formula should be shown to be a valid statement in F-logic before we can
say that the web service completely satisfies the functional requirements of the goal.
In this formula, x; represents the free variables in the goal and y; represents the free
variables in the web service.

Informally, the formula above checks that the goal pre-condition logically implies
the pre-condition of the web service (hence guarantying that the web service has all
it needs before it gets executed) and that the goal pre-condition, together with the
implicit statement of the web service functionality (that the web service pre-condition
implies the web service post-condition) logically implies the goal post-condition, thus
guarantying that the goal will get the desired result with the execution of the web
service.

In our implementation of web service specifications and the matcher, we diverge
slightly from the logical definition given above in order to take advantage of the
meta-logical capabilities of Flora-2 i.e. insertion of new facts which is a meta-logic
operation. Specifically, the post-condition of web services can contain the insert
predicate of Flora-2, so that the post-condition, instead of just being stated as being
true, is made to be true by insertion of facts into the knowledge base. Then the
post-condition of the goal can be tested against the new knowledge base.

Listing 1 depicts how our matching logic is implemented in Flora-2. Predi-
cate %match in line 1 takes two variables, ?goal representing a goal object
and ?WS representing a web service object as its parameters. In line 2, a new
variable, ?module is defined and assigned to the web service tag. In line 3, a
new Flora-2 module with the same name as the web service tag is created and
the description of the goal object is loaded into it. In line 4, the pre-condition of
the goal (goal.pre) is inserted into the created module. Then in line 5, by calling
$applyWebService (?WS) the Flora-2 reasoner attempts to prove the web ser-
vice functionality specified in the form of an if-then-else statement in the knowledge
base module. If $applyWebService (?WS) is proven, this means that the pre-
condition of the web service is logically implied by the pre-condition of the goal, and
moreover the actions specified in the post-condition of the web service have been
carried out. In line 6, the variable ?gPost is assigned to the goal post-condition,
and in line 7 its validity is checked against the current knowledge base. If the check
succeeds, this means that the goal post-condition is logically implied by the web
service post-condition. It should be clear that the $match predicate indeed verifies

shahin.mpa@gmail.com

194 S.M. Ataee and Z. Bayram

the validity of the formula (2) that we defined as the meaning of a successful match
between a goal and a web service.

Listing 1 The $match and $matcher predicates

1: 9anatch(?goal , ™WS) :—

2: Imodule=MWS.tag, //Specifies the name of module

3: 9doadGoal(?goal, ?module) ,

4: JinsertGoalPre(?goal,?module), //Inserts
goal.pre into the KB.

5: YapplyWebService(™WS), // If ws.pre gets true

then ws.post will be
inserted into the KB.
6: ?goal[post = ?gPost]@Mmodule,
7: ?7gPost. // Checks whether goal.post is implied
by the ws.post.
8: %applyWebService(?ws) :(—
X = ws.def, 7X. // Tries to prove the web
service definition (ws.def).
9: %amatcher(?goal,™WS) :—
\if Yanatch(?goal, 7WS)
\then writeln([’Goal’,?goal,
"matches’ ,7WS ’. ’])@\prolog
\else writeln([Goal’,?goal,
’does not match’,7WS *.’])@\prolog.

3 Use Case: Medical Appointment Finder

In this section we show how our approach can be used to describe the scenario in
[8]. We will see that same results are achievable. However, our matching engine is
much simpler.

The use case scenario is as follow: A patient named Philip wants to make
an appointment with a specialist doctor (ophthalmologist) in Montpellier hospi-
tal located in a city of France. His preferred dates for this appointment are the days
either before 19th or after 23rd (excluded) of the month. The patient should provide
some basic information about himself, as well as a description of what he desires.
Listing 2 shows a sample goal for this scenario rewritten in our specification format.

The patient provides the specialty ophthalmology, his name Philip, the hospital
name he wishes to get the appointment from (i.e. Montpellier), and his age (which

shahin.mpa@gmail.com

A Novel Concise Specification and Efficient F-Logic ... 195

is requested by the web service) in the form of an appointment request. What he
wants is an appointment date either before the 19th or after the 23rd and an available
specialist doctor’s name.

For the web service side, web service pre and post-conditions have been given
in listing 3. The web service uses a local database of Doctor instances containing
information about doctors (i.e. doctorl and doctor2) and some general facts (i.e.
Montpellier hospital is in Paris), and these are also depicted in listing 3.

Listing 2 Goal specification for the appointment use case

1: 0.GO3:c_Goal. //0_GO3 is an object of the concept

c_Goal
2: 0. GO3[
3: pre = ${RequestAppointment[specialty—Opthalmology,
4: patientName —> Philip,
5: appointmentDate — ?7_,
6: hospitalName —> MontpellierHospital,
7. age = 22],
8: livesIn(Philip,Paris)},
9:post — ${Appointment[appointmentDate —> ?Date,
10: doctorName —> DN,
11: patientName —> Philip,
12: hospitalName — MontpellierHospital
13: 1,
14: ((?Date < 19); (?Date > 23))}].

The web service provides some placeholders for its inputs while checking them
over some predefined criteria (like, the patient must be at least 19 years old). More-
over, it checks whether the patient lives in the same city as the location of candidate
hospital. After successful unification of inputs, the web service inserts all the possible
appointments into the specified module (in this case @WS01) which is the common
knowledge base between the web service and the goal. In this example, just the doc-
tors with the specialty of ophthalmology who are working in Montpellier hospital
are inserted into this module.

By referring to listing 1 again, we can see that all these actions take place through
the call to $applyWebService (?WS) atline 5Sin the $match predicate. At line
7, the Flora-2 reasoning engine attempts to prove the goal post-condition. At this
point, the appointment date is checked to verify that it conforms to the constraints
specified by the patient in the post-condition of the goal (i.e. either before the 19th or
after the 23rd). This checking filters out those doctors who are not available during
the requested dates.

shahin.mpa@gmail.com

196

Listing 3 Web service specification for the appointment use case

1: doctorl[

2: doctorName —> Robert,

3: specialty — Neurology,

4: hospitalName — MontpellierHospital,
5 availableDate — 22

6:]:Doctor.

7: doctor2|

8: doctorName —> Green,

9: specialty — Opthalmology,

10: hospitalName —> MontpellierHospital ,
11: availableDate — 10

12:]:Doctor.

13: hospital (MontpellierHospital , Paris).
14: o WSO01:c_WebService[

15: tag — W0,

16: def —

S.M. Ataee and Z. Bayram

17: ${\if (RequestAppointment[specialty — DS]@W],

18: RequestAppointment[patientName —> 7PN]@WI)I,

19: RequestAppointment[appointmentDate—>?Date |@WJ],

20: RequestAppointment[hospitalName — HN]J@WI0],

21: RequestAppointment[age — 7X]@WIL,
22: (X > 18),

23: livesIn(7PN,?city Y@WY|,

24: hospital (THN ?city),

25: ?doctor:Doctor[doctorName —> 7DN,

26: specialty — DS,

27: hospitalName —> 7HN,

28: availableDate — ?Date])

29: \then (

30: ?post = ${ Appointment[appointmentDate—>?Date,
31: doctorName — DN,

32: patientName —> 7PN,

33: hospitalName — "HN]J@WXl},

34. Jinsert{?post}

35: \else \false}].

If we changed the last line in listing 3 to hospital (Montpellier
Hospital, Berlin), the match would fail since the web service pre-condition
would not be satisfied. Similarly, if we changed line 11in listing 3 to available
Date -> 21, againthe match would fail, but this time due to the fact that the goal’s

post-condition would not be satisfied.

shahin.mpa@gmail.com

A Novel Concise Specification and Efficient F-Logic ... 197

4 Related Work

A good explanation of WSMO and WSML can be found in [9] and [3]. The main
available resource for Flora-2 is its user’s manual containing useful examples of
Flora-2 code [5].

In [10], the authors propose a framework for semantic web service discovery
using FIPA multi-agents. They have a broker architecture and deal with OWL-S [16]
rather than WSMO, as we do. In [11] the work presented is similar to ours, however
the authors use WSML to specify goals and web services, which is very verbose.
Furthermore, they do not state the proof commitments that are needed for a successful
match in a logical way.

The closest and most comparable work to ours is [12], where the authors use Flora-
2 to present a logical framework for automated web service discovery. Moreover,
they use WSMO specification as the conceptual description of web services as we do.
However, their specification of web services and goals are very involved, and they
resort to Transaction logic for proof commitments. Our specifications, as apparent
in the realistic example given in Sect. 3, are quite intuitive and simple. Furthermore,
we make use of only Frame-logic for stating our proof commitments, which itself
is equivalent to first-order predicate logic [4], and is much more accessible to the
reader. The simplicity of our approach can be an important facilitator in its adaptation
by industry (after necessary enhancements to deal with the web environment).

There are several surveys and reviews about semantical as well as non-semantical
web service discovery proposals, which give a general overview of this field of study
[13-15]. Many of the surveyed proposals are based on OWL-S. As M. Kifer et al.
stated in [12], such approaches rely on subsumption reasoning [17] and due to the
lack of rules in OWL, they are not able to exactly guarantee goal post-conditions.

5 Conclusion and Future Work

We have demonstrated how Flora-2 can be used as a convenient and expressive way
to model semantic web services conforming to WSMO. We have also shown that
reasoning for semantic web service discovery can be done very effectively by relying
on the underlying Flora-2 engine and its meta-level capabilities. Our work can readily
be the basis of implementing strategies for semantic web service composition and
choreography. We intend to concentrate our efforts for realizing this goal in the near
future.

shahin.mpa@gmail.com

198 S.M. Ataee and Z. Bayram

References

1. OASIS: Reference Architecture Foundation for Service Oriented Architecture Version 1.0.
Committee Specification 01 (2012)

2. Bruijn, J., Bussler, C., Domingue, J., Fensel, D.: Web Service Modeling Language. http://www.
w3.org/Submission/WSMO/ (2005)

3. Fensel, D., Kifer, M., Bruijn, J.: D16.1v1.0 WSML Language Reference (WSML Final Draft).
http://www.wsmo.org/TR/d16/d16.1/v1.0/ (2008)

4. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object oriented and frame-based lan-
guages. J. ACM (JACM) 42(4), 741-843 (1995)

5. Kifer, M., Yang, G., Wan, H., Zhao, C.: Flora-2: User’s Manual, Version 1.0 (Cherimoya).
Department of Computer Science, Stony Brook University, Stony Brook, NY 11794-4400,
U.S.A. (2014)

6. Chen, W., Kifer, M., Warren, D.: HiLog: a foundation for higher-order logic programming.
J. Logic Program. 15(3), 187-230 (1993). doi:10.1016/0743-1066(93)90039-J

7. Kifer, M., Bonner, A.: Logic Programming for Database Transactions in Logics for Databases
and Information Systems. Kluwer Academic Publication, Dordrecht (1998)

8. Sharifi, O., Bayram, Z.: Matching Goal and Semantic Web Services in Flora-2: A Logical
Inference Based Discovery Agent. submitted for publication (2015)

9. Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D., Domingue, J.:
Enabling Semantic Web Services, The Concepts of WSMO, pp. 63-81. Springer, Heidelberg.
http://dx.doi.org/10.1007/978-3-540-34520-6_6. Accessed 1 Jan 2007

10. Neiat, A., Mohsenzadeh, M., Forsati, R., Rahmani, A.: An agent-based semantic web service
discovery framework. In: International Conference on Computer Modeling and Simulation,
2009 (ICCMS °09), pp. 194-198. IEEE (2009). doi:10.1109/ICCMS.2009.75. ISBN:978-0-
7695-3562-3

11. Sirbu, A., Toma, I., Roman, D.: A Logic-based Approach for Service Discovery with Composi-
tion Support, pp. 101-116. Whitestein Series in Software Agent Technologies and Autonomic
Computing, Emerging Web Services Technology (2007)

12. Kifer, M., Lara, R., Polleres, A., Zhao, C., Keller, U., Lausen, H., Fensel, D.: A logical frame-
work for web service discovery. In: Proceedings of the ISWC 2004 workshop on Semantic
Web Services: Preparing to Meet the World of Business Applications (2004)

13. Duy Ngan, L., Kirchberg, M., Kanagasabai, R.: Review of semantic web service discovery
methods. In: 6th World Congress on Services (SERVICES-1), pp. 176-177 (2010). doi:10.
1109/SERVICES.2010.85. ISBN:978-1-4244-8199-6

14. Kster, U., Lausen, H., Knig-Ries, B.: Evaluation of Semantic Service Discovery? A Survey and
Directions for Future Research. Emerging Web Services Technology, Volume 11, Whitestein
Series in Software Agent Technologies and Autonomic Computing 2008, pp. 41-58

15. Malaimalavathani, M., Gowri, R.: A survey on semantic web service discovery. In: International
Conference on Information Communication and Embedded Systems (ICICES), pp. 222-225.
IEEE (2013). doi:10.1109/ICICES.2013.6508208. ISBN:978-1-4673-5786-9

16. Martin, M., Burstein, M., Hobbs, J.: OWL-S: Semantic Markup for Web Services. http://www.
w3.org/Submission/OWL-S/ (2004)

17. Patel-Schneider, P., Hayes, P., Horrocks, I.. OWL Web Ontology Language Semantics and
Abstract Syntax. http://www.w3.org/TR/owl-semantics/, W3C Recommendation, W3C (2014)

shahin.mpa@gmail.com

http://www.w3.org/Submission/WSMO/
http://www.w3.org/Submission/WSMO/
http://www.wsmo.org/TR/d16/d16.1/v1.0/
http://dx.doi.org/10.1016/0743-1066(93)90039-J
http://dx.doi.org/10.1007/978-3-540-34520-6_6
http://dx.doi.org/10.1109/ICCMS.2009.75
http://dx.doi.org/10.1109/SERVICES.2010.85
http://dx.doi.org/10.1109/SERVICES.2010.85
http://dx.doi.org/10.1109/ICICES.2013.6508208
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/TR/owl-semantics/

